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The qualitative metheds of the Kolmogorov-Amol'd-Moser theory are used to investigate a quasilinear oscillatory system with 
finite-dimensional frequency basis. The question of whether a perturbed system with the same basis has quasipefiodie solutions 
is formulated and studied, subject to suitable assumptions concerning the arithmetical properties of the characteristic indices of 
the generating system. The Bogolyubov-Mitropol'skii results are extended to the case in which the matrix of the linear system 
is non-singular and has purely imaginary eigenvalues. The existence of integral manifolds of a certain type is proved using the 
structural properties of the system, by almost identical transformations of the variables, the small parameter being scaled in a 
power sense. Besides the so-called algebraic critical case associated with the above-mentioned authors' work, some attention is 
devoted to the transomdental case of the critical part of the matrix, at the same time justifying and sharpening Moser's results 
in this area. 

1. S T A T E M E N T  OF T H E  P R O B L E M  

Consider the n-dimensional quasilinear system 

Jc = Ax + f ( t )  + ~.X(t, x,  1;) (1.1) 

whose right-hand side is a sufficiently smooth function for 0 6 e < e*, x ~ D, where D is a domain in 
R ~. It is assumed that A is a constant matrix and t h a t f  and X are quasiperiodic as functions of t with a 
vector to = ( t o t , . . . ,  0~m) of  basis frequencies. 

A function z(t)  is said to be quasiperiodic with basis frequencies c o l , . . . ,  tom if these frequencies are 
rationally independent and a function Z(q0, 2~-periodic in the components of  the vector 9 -- (91 . . . .  , 
~Pm) exists, such tlaat z(t) = Z(COlt, . . . ,  o~t) .  The  function Z(q 0 will be called the generator of  the 
quasiperiodic ftm¢~ion z(t). Henceforth we shall use the term "quasiperiodic functions" for functions with 
the same vector 0~, of basis frequencies. All functions of  q~ considered will be 2,t-periodic in qh . . . .  , q~,n 
and real analytic for I Im, ¢p ] < q~*, q~* > 0. 

Our problem is whether quasiperiodic solutions of  system (1.1) exist for small positive values of  the 
parameter e. 

Let X l , . . . ,  ~ be the eigenvalues of A. We know [1] that if Re Xj # 0 (j  = 1 , . . . ,  n),  then system 
(1.1) has a unique quasiperiodic solution which tends, as e --* 0, to a quasiperiodic solution of  the 
generating equation 

k = Ax + f ( t )  (1.2) 

We intend to extend this result, due to Bogolyubov, to the case of  a matrix A which is non-singular 
but admits of  pure imaginary eigenvalues. 

2. A L G E B R A I C  C A S E  

Let us assume that Re ~ = 0 (j = 1 . . . . .  2/) and that none of  the other eigenvalues of A lie on the 
imaginary axis. Assume, moreover, that the numbers ~ = i ~  (j = 1 , . . . ,  2/) are distinct, non-zero and 
satisfy the Diophantine condition 

] 2, [ 
~ q i C O i + ~ P j a j  >T Iq I-~, T >0,  x ~ m  
i=l i=l 

(2.1) 
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where Iql = Iqxl + . . .  + Iqml > 0, IPl = IPll + - - .  + IP~al ~< 2, IPl + . . -  +P2a I ~ 1 (andpj andqi 
are integers). Condition (2.1) may be split into three systems of inequalities 

L=~ qitoi l> Tlql-X (2.2) 

[i=~qioi-oti[>Vlql-X, j = l  ..... 2l (2.3) 

[ I 

I~,qiCOi+Oti-Ottl>Tlql-X, j, k = l  ..... 2/; j , k  (2.4) 
I I i--1 

Lemma 1. If conditions (2.3) hold, system (1.2) has a unique quasiperiodic solution x = ¥(t). 

Proof. Write system (1.2) in the form 

0 = co, ~(0) = o; ~ = Ax + F(~) (2.5) 

where F(q~) is the generator of the quasiperiodic function f(t). We must prove that system (2.5) has an integral 
manifoldx = ~(q0. That will be true if and only if the function W(q~) satisfies the equation 

~-~-v c0- ^,I, = v (~)  

But if condition (2.3) holds, this equation is uniquely solvable in the class of functions under consideration (see, 
for example, [2]). 

Suppose that the trajectory ¥(t)  lies in the domain D. We shall seek a quasiperiodic solution of system 
(1.1) that tends to a generating solution ¥(t)  as e -o  0. Set 

y = x - ¥(t) (2.6) 

Then system (1.1) may be written as 

= Ay + e.X(t, y + W(t), E) (2.7) 

I fwe  pu tA  -- diag (~,b • • •, X2t), system (2.7) may be written in suitable coordinates g, q in the form 

~o = o ,  tO(o) = o 

~ = A~ +e.a(tO)+eT(tO)~ +F.~.(tO, ~, r I, e) 

fi = Qrl + ~.b(tO) + eY(tO, ~, rl, E) (2.8) 
~=- 

=-(tO, o, o, o ) = o ,  v(tO, o, o, o ) = o ,  -~ (~0 ,  o, o, o ) = o  

where Q is a non-critical matrix. The equations corresponding to complex conjugate elements of A will 
also be complex conjugates of  one another. 

Lemma 2. If condition (2.1) holds, a transformation of variables 

= u + ~ (tO) + ~/'(tO) u, rl = ~ -~ ~(tO) (2.9) 

exists which reduces system (2.8) to the form 

0 = o~, tO(o) = o 

it=(A+eB)u+~U(tO, u, "u, ~), "b=Qu+eV(tO, u, "o, e) 
(2.1o)  0U 

u(tO, o, o, o )=  o, v(tO, o, o, o )=  o; ~u-u (to, o, o, o ) = o  

where B = diag (Bt . . . . .  B2t) is a constant diagonal matrix, such that for complex conjugate pairs of  
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the corresponding Bj are also complex conjugates. 

Proof. Differentiating equalities (2.9) along the trajectories of systems (2.8) and (2.10), we obtain equations for 
the vectorsp(q~), q(qO and the elements P/k (tp) of the matrix P(9) 

~ o ~ -  Ap=a(¢O), -~¢o-Qq= b(cp , (2.11) 

OI~k {o+i(a i -ak  )Pik -. TikOp), j ~ k 

If we define B 1 to be the mean values of the functions T//(V) (I = 1 . . . . .  20, then conditions (2.2)-(2.4) imply 
that Eqs (2.11) are solvable [2]. The assertion of the complex conjugate form of B i follows from the complex 
conjugate nature of the functions T//(q~). 

Define 

u = " ~ z ,  "o = -~/ew (2 .12 )  

System (2.10) takes the form 

(o = to, ~ ( 0 )  = 0 

~=(a+eB)z+eY2 Z(qJ, z, w, x[e) (2.13) 

w=Qw+q~w(¢, z, w, 4~) 

where Z and W arc smooth functions for small I~zll, Ilwll, ~/(e), and 9 e R m. 
System (2.13) has an integral manifold of the formz = z(tp, e), w = w0p, e)[3, I.~mma 2.1]. This implies 

the following theorem. 

Theorem 1. If  condition (2.1) holds and 

ReB i ~ 0,  j = 1 ..... 21 ( 2 . 1 4 )  

then system (1.1) l~as a quasiperiodic solution for all sufficiently small e > 0, which tends to a generating 
solution for e > O. 

Theorem 1 is a special case of Theorem 2, to be proved below. 

Remark. Since A has I pairs of purely imaginary eigenvalues, it follows that under suitable conditions system 
(1.1) also has---besides quasiperiodic solutions with m basis frequencies--invariant tori of arbitrary dimension 
from m + 1 to m + l (see [2, Section 6, Chapter 1]). In that case bifurcation of the invariant toms will occur at 
e = 0 .  

We will now consider a more general case. 

Lemma 3. For any natural number v, if condition (2.1) holds, a transformation 

~ = u + e g ( 9 ,  u,e), ~ = ~ + e h ( 9 ,  u,e) 

exists which reduces system (2.8) to the form 

¢ = to, q~(o) = o 

fi=(A+e.BO)+...+eVB(V))u+eU((o, u, x), e.) 

6=Qu+eV(~p,  u, ~, e) 

U(~O, O, O, E)=O(£2v-l),  V(tp, O, O, t~)=O(E: 2v-I) 

OV U(~o, O, O, e)=O(eV), O, O, E).=O(E .v-I) 

(2.15) 

(2.16) 
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where B q) = diag(Blq), . . . ,  BO~ )) are constant diagonal matrices. 
The proof is analogous to that of Lemma 2. The functions g and h in (2.15) are linear functions of u, 

whose coefficients and free terms are polynomials in e. 
We now put 

//=EV-~2Z, "D=E2V-Iw (2.17) 

Then system (2.16) takes the form 

¢ = o 

z=(A+EB(I)+...+EVB(V))z+EV+~2 Z(q), Z, W, "~) 

¢v = Qw + 3/-~W(q), z, w, "~f-~) 

where Z and Ware  smooth functions for small H ,  IIwll, ' /(0 and ~0 e R m. 

(2.18) 

Theorem 2. If condition (2.1) holds and 

(1) 2 (v) 2 ( R e B ~ )  +...+(ReB~ ) >0, j =  1 ..... 2/ (2.19) 

then system (1.1) has a quasiperiodic solution for sufficiently small e > 0, which tends to a generating 
solution for e > 0. 

Proof. By condition (2.19), A + E B  (1) + . . . + eVB (v) is a diagonal matrix with blocks of the 
form iS(e) + dR (E), where 0 < r ~< v, and S(e) and R(e) are real diagonal matrices such that R(0) has 
non-zero diagonal elements. Suppose that there are just o such blocks. System (2.18) can be reduced 
to the form 

¢ = co,  o(0) = 0 

f v = Q w + O ( ~ ,  k = l  ..... o; 0<rk~<v  

We may assume, without loss of  generality, that R k = diag (R'~, RT), where the diagonal elements of 
the matrices R~ are positive and the diagonal elements of ~ negative. Let e-~kSk = diag (Sk(1)(e), S,(2)(e)). 
Letting 

I-diag(X~k, 0), t > 0 
J~(t) = [diag(O, X~),  t<O 

+ [-( iS[ 'n)+R~)t]  m = l ,  2; k = l  ..... ~r: Z;,k = exp 

we see that for all t ~ R 

t >0, 

Using this estimate as in the proof of the theorem in [2, Section 3, Chapter 1], we can prove that 
system (2.18) has an integral manifold z = z(q~, e), w = w(q~, e). Substituting these expressions 
into (2.17), and using (2.14) and (2.6), as well as the fact that ~0 = c0t, we obtain the assertion of the 
theorem. 

If a natural number v exists such that condition (2.19) holds, then, following Lyapunov, we say that 
the algebraic case is effective. Otherwise we speak of the transcendental case. We have thus been 
considering the algebraic case. 

3. T H E  T R A N S C E N D E N T A L  CASE 

Considering system (2.10), assume that 

Bj = ff3j, [3j ¢: O, j = 1 . . . . .  21 (3.1) 
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where the numbers [Ij are real and pairwise distinct. 
We will confine our attention to the case when n = 21, i.e. system (1.1) has no non-critical variables. 

Assume, moreover, that the functions on the right in (1.1) are real analytic for small Jim t[ and le[, 
and analytic in x in a complex neighbourhood of the domain D. Accordingly, system (2.13) is analytic 
for small IM, Ilwll, H Im ~p[[, [qe[. 

The numbers )'i = i0~-, Bj = i~j split, into complex conjugate, pairs. Letting cr~ = --~+t, [3k = -[~k+l 
(k = 1 , . . . ,  1), we may assume (without loss of generahty) that ~k > 0. 

Suppose ~q . . . .  , ~t21, where ~ = -$tk+l, are numbers that satisfy condition (2.1) with ~, = Ke, 
i.e. 

qif, o i + ~. pj~tj > K~lql -~ , g > 0,. "c > 0 
j=! (3.2) 

Iql>0, Ipl~ < 2, Ipl+....+p2tl~ 1 

Define the matrix M = diag (0h, • • -, 0t22) • 
The following assertion was estabfished in [4]. 

Assertion. A number e*(K) > 0 exists with the following property: matrix-valued functions A(qe), C({p, 
qe) and a vector-valued function c(q~, qe) exist, all analytic in q(e) for [qe[ < qe*, such that the 
transformation 

z=~ +c(tp, ff-~)+C((p, ~ ) ~  (3.3) 

reduces the system 

to the form 

(0=¢o, q)(O)=O; $=(M +E~ A(ff-~))Z +e~ Z(q), Z, "~f~) (3.4) 

~0 = to, q)(O) = O; ~ = M~ + YOP, 4, ~ - )  (3.5) 

Y(q), O, ff~)=O, -~-(tp, O, ~ /~)=0 (3.6) 

Moreover, A(~/~) is a diagonal matrix, and complex conjugate elements of  M correspond to complex 
conjugate elements of A. 

Consider the question of the existence of numbers P.1, • • •, gt2t that satisfy condition (3.2). Take x = 
m + 1. Define ~t k -  e.k = ek (k = 1 . . . .  , l). If [p [ = 0, inequality (3.2) is true by virtue of (2.2), since 
we may assume that Ke < ¥. If [p [ = 1, inequalities (3.2) may he written as 

li~= i qicoi-(~k +~k)[> K~Aql -(m+l), k = l  ..... l 

If [p[ = 2, inequalities (3.2) are 

li~=lqiC.Oi+(O~j+Ej)~(O~+Ek)l>KElq l-(m+l) 
k, j= 1 ..... 1; k ~ j  

(3.7) 

(3.8) 

Lemma 4. For arLy 0 > 0, 11 > 0, one can choose K(0, 1]) > 0 so that the inequality 

[ i~ qicoi - ,  l> K~.lql-.('n+') (3.9) 

will hold for values of [2 in some set F, such that for any interval L of length 2Tie it is true that mes 
(F N L) > 2Tie(1 - O). 
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Proof.? Let us determine the measure of the set of all ~ > 0 such that inequality (3.9) fails to  hold, i.e. 

q-, ol  
For given ql,  • • • ,  qm the measure of the set of all such ~ is 2Ke Iql -(m÷~). This quantity must be 

summed over all integers ql  . . . .  , qm. Since the number of different tuples ql,  • • • ,  qm with the same 
norm Iql is majorized by a quantity cl Iq I mq ,  Cl > 0, it follows that the sum cannot exceed 

~, 2 c l K ~ -  
Iql=l 7 -- C2Kg' c2 > 0 

Consequently, mes (F O L)  ~ 2vie - c2Ke. Taking K < 2rl0c~ 1, we see that mes (F N L)  > 2tie(1 - 0), 
which it was required to prove. 

Corollary. For any rlk > 0 (k = 1 . . . .  ,1), inequalities (3.7) will hold for eke Fk C (-rlt~, rlke), and 
moreover, by suitable choice of K, the measure of Fk may be made as close to 2~t~ as desired. An 
analogous statement holds for numbers (e/-v- e k e  F~ C (-rij + rlk)e, 01/+ rlk)e) satisfying inequalities 
(3.8). 

Let us assume that 

A = i diag ( d  I . . . . .  d I , - d 1 . . . . .  - d t ) 

where  dk(~g ) (k = 1 . . . .  , I) are real analytic functions. 

(3.10) 

Theorem 3. If conditions (2.1), (3.1) and (3.10) hold, then in any positive half-neighbourhood of e = 
0, a value of e exists for which system (1.1) has quasiperiodic solutions that tend to a generating solution 
as e ~ 0. Moreover, for e e (0, e0), the measure of the set of such values of e is equivalent as an 
infinitesimal quantity to e0. 

Proof. Consider system (3.5). It follows from (3.6) that this system has a solution 9 = cot, ~ = 0, to 
which, by (3.3), there corresponds a solution 9 = cot, z = c(tot, ,de) of system (3.4). System (3.4) will 
be identical with system (2.13) (where, in this case, the third equation drops out) if 

a + e,B = M + E~A(-vt~) (3.11) 

Fix e = e0, where e0 is sufficiently small. L e t  e e (0, r.o), rlk = ~k/2 .  Fix K so that, as guaranteed by 
the corollary to Lemma 4, the measure of the sets Fk is sufficiently close to 211~0 for all k = 1 , . . . ,  I. 

Since the matrix M depends on parameters el . . . .  , et, the function A depends not only on ~/e but 
also on these parameters. As a function of the parameters, it is defined by virtue of (3.7), (3.8) and 
the corollary to Lemma 4 on a certain set F C ITk=l(--rlk ~ rig%). In addition, it has been shown [5] 
that as a function of el . . . . .  et it may be extended to a C** function on the direct product of the intervals 
(-rltdE0 ~e0).  Denote the extended function by E = i diag ( E l , . . . ,  YEt, - E l , . . . ,  -YEt). 

We write Eq. (3.10) with the extended function A in terms of the coordinates 

I ~ k e - e k - e ~ E k ( ~ / ~ ,  el . . . . .  E l ) = 0 ,  k = l  . . . . .  l (3.12) 

The Jacobian of this system in the parameters El , . . .  , ~ does not vanish at e = el = . . .  = et = 0. Hence 
system (3.12) has a solution ek, = I ~  + Fk(e) ,  k = 1 , . . . ,  l, with Fk(e) = o(e). The functions Fk are 
defined for e e (0, e0/2). However, we are interested only in e values with 

(3.13) 

k , j =  1 . . . . .  l 

tThis proof is due to A. D. Bryuno. 
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By the corollary to Lemma 4, each of conditions (3.10) defines a set of values ofe  = (0, eo/2) whose 
measure is as close to e0/2 as desired. By additivity, the measure of the set of e satisfying all conditions 
(3.13) is also as close to e0/2 as desired. For these e values system (2.13) has a solution tp =tot, z = c (~ ,  
~/~), and by (2.6), (12.9) and (2.12), this solution determines the desired quasiperiodic solution of system 
(1.1). This proves Theorem 3. 

For a fixed matrixA, condition (2.1) holds for almost all frequency vectors to. Conditions (3.1) and 
(3.10), on the contrary, impose substantial restrictions on the nature of the system. These restrictions 
are analogous to those imposed on a system of differential equations for KAM-theory to be applicable. 
It is well known that KAM-theory is applicable to Hamiltonian systems and reversible systems. We will 
show that conditious (3.1) and (3.10) are also satisfied for Hamiltonian and reversible systems. It will 
be shown simultaneously that Hamiltonian and reversible systems belong to the transcendental case. 

We begin with reversible systems. System (1.1) is said to be reversible if the Fourier coefficients with 
respect to cp of the fight-hand side of the corresponding system (2.8) with diagonalA are purely imaginary 
functions of the real variables ~ and e (the variable 11 does not occur in (2.8)). 

We will give an e~anple of a reversible system. Consider the system of second-order differential equations 

£k +a~xk =fk(t)+e-Xk( t, x, Jc, e), k=l  ..... d (3.14) 

where the functionsfk andX~ satisfy the conditions imposed in Section 3 on the coordinate functions of the vectors 
f andXin  system (11). 

Lemma 5. If 

fk(--t)= fk(t), Xk(-t, x,-:c, e.)= Xk(t, x, .~, e), k=l ..... d (3.15) 

then system (3.14) is reversible. 
Proof. The generating solution of system (3.14) is an even function. The system corresponding to (2.7) is 

J'2k-, =-/a,Y2k-I +iaklgg,( t , 1  a/ e) "~(Y2j-I +Y2j), ~'(Y2j-1 -Y2j), 

(, a, ) Y:~k ;iaky2k-ia~'leg~ t, ~(Y2j-I +Y2j), "~'(Y2j-I-Y2j), e 

g~:(t, uj, i~j, e)=X~(t, uj+~j(O, i~j+(~j(t), e)-Xk(t, aj(t), by(t), e) 
j,k=l ..... d 

where a(t) is a generating solution. The functions 

I' °' 1 Yk(cP, Y, Y, g)=a~lGk ~P, ~(Y2j-I +Y2j), "~(Y2j-I-Y2j), ~ 

where G k are genera~tors of quasiperiodic functions g~, which are invariant, by (3.15), under the transformation 
i --> -/, tp --~ -9. Hen~ their Fourier coefficients are self-conjugate, i.e. real. 

Corollary. A quasilinear differential equation 

x (2d) +blx(2d-2)+...+bdX=f(t)+gX(t, x, J~,...x (2d-I), £) 

is reversible if all roe,ts of  the equation 

~.d +bl~d-l +...+b d =0 

axe negative and moreover f ( - t )  = f(t) 

X(-t, x,-Yc ..... - x  (2d-D, e)= X(t, x, Jc ..... x (2d-D, e) 

Theorem 4. If system (1.1) is reversible and condition (2.1) holds, the conclusion of Theorem 3 holds. 

Proof. We must prove that conditions (3.1) and (3.10) hold for reversible systems. Condition (3.1) 
follows from the leu;t equation of (2.11). 

In addition, it follows from Eqs (2.11) that the Fourier coefficients of the coordinate functions p(cp) 
and P(tp) in the first equation of (2.9) are real. Expanding the fight-hand side of (2.8) in power series in 
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= y and e, and in Fourier series in 9, we obtain series with purely imaginary coefficients. Consequently, 
the same is true of system (2.10), hence also of (2.13). The transformation (3.3) is the composition of 
an infinite number of transformations of type (2.9) [4]. Thus condition (3.10) holds, since the elements 
of A are obtained by summing the free terms of Fourier series with the above-mentioned property. 

We will now consider Hamiltonian systems. 

Theorem 5. If system (1.1) is Hamiltonian and condition (2.1) holds, the conclusion of  Theorem 3 
holds. 

Proof. The transformations of system (1.1) to system (2.7) are canonical. Consequently, adding the 
equation ~: = -egH/Or to system (2.8), where e/-/is a generator of the Hamiltonian of system (2.7) as a 
quasiperiodic function oft,  we obtain a Hamiltonian system with Hamiltonian totr + eJ4(9, x; y, e), where 
the pair (x, y) corresponds to ~ in (2.8) (the variable rl does not occur). 

We construct a transformation (2.9) as a canonical transformation of the variables 9, r, x and y into 
the variables 9, r, x and)7 with generating function 9tr + x~y + eS(9, Yc, )7, e). Since H does not depend 
on r, systems (2.10) and (2.13) are Hamiltonian. Hence the coefficients of u and z, respectively, on the 
right-hand sides differ only in sign from their complex conjugates, i.e. they are purely imaginary, so 
that (3.1) holds. 

But (3.3) is a composition of such canonical transformations. Hence the elements of the matrix A 
are also purely imaginary, so that condition (3.10) also holds. 

Remark. Following the proof that condition (3.1) holds, we can also prove that in Hamiltonian systems condition 
(2.19) does not hold for anyj and v. 

Example. Consider the Duffmg equation 

Ji+a(£)x=bx3+£h(t), a (e )>0 ,  £ > 0  

Setting x = ~/(e)y, we obtain a quasilinear equation 

y~+a(O)y = ~'~h(t)+E(by 3 +c(e)y), c(£) = E - 1  (a (E)-a(0) )  (3.16) 

Since this equation may be represented in Hamiltonian form, Theorem 5 is applicable. Hence for small positive 
e the typical situation for Eq. (3.16) is the existence of a quasiperiodic solution with the same frequency basis as 
h(t). 

The research reported here was supported by the Russian Fund for Fundamental Research 
(93-011-1717). 
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